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ABSTRACT
1727

The conditions for the existence of tensile fracture along a
bimaterial interface have been determined by an extension of Yoffe's
method. The velocity of such a fracture is specified by the combina-
tion of elastic properties of the two media. The fracture can move
only at the specific velocity, without acceleration or deceleration. The
maximum possible velocity of a fracture along an interface is the lower
of the two Rayleigh wave velocities. The relative displacements on
either side of the fracture surface depend* on the velocity of the
fracture as well as the combination of elastic properties. Several
curves are presented showing the relationship between the elastic
constants of the two media and the corresponding fracture velocity. A
critical relation between the Poisson'’s ratio and shear moduli of the
two media has been given. If this relation is satisfied, catastrophic

failure cannot occur along the interface. A4V+LJD(
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1. INTRODUCTION

A natural extension of the study of fraeture* propagation in
infinite homogeneous media would be the study of fracture in aniso-
tropic media. As a first step in this direction, it is proposed to
investigate the possibility of a fracture f"along a plane boundary
sepgrating two isotropic media of differing elastic properties.

Such a study would be of interest in geclogy, in the study of fault-
ing in stratified rocks, and in engineering, in the study of failure
along welded or cemented joints.

The corresponding static case of the determination of stresses
around a crack at a bimaterial interface has been studied by WILLIANS
(1959) and his group. wWilliams found that stresses in the neighbour-
hood of the crack tip po:aul. a sharp oscillatory character, of
the type r:'"i sin(b log r), where r is the distance grom the tip and
b is a constant. Motion of dislocations along a bimaterial interface
has been investigated by WEERTMAN (1964). He determined that the
limiting velocity of a dislocation was the lowest sound velocity (i.e.

the transverse wave velocity) in either media.

* A fracture is here defined as the dynamic counterpart of a crack.
A crack is defined as a static cavity with longitudinal dimensions
much larger than the lateral one. The 'Yoffe fracture' is a fracture

which maintains a constant length during propagation.
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In this paper the method of YOFFE (1951) is used to study the
conditions under which a fracture may propagate along a bimaterial
interface. Yoffe's method was originally applied to fractures of
constant length propagating at constant velocity. However, one may con-
struct a growing fracture by considering two coincident Yoffe frac-
tures propagating in opposite directions with the same velocity. The
relative stress distribution is the same as that obtained by unila-
teral motion of a Yoffe fracture. Yoffe's method has been considerably
simplified by the use of standard solutions of dual-integral equations
(BILBY AND BULLOUGH, 1954).

The radius of the tip of the Yoffe fracture increases with
velocity (COTTERELL, 1964). This may or may not be true for
actual fractures. Hence it has been suggested (MANSINHA, in press)
that the tip radius of a fracture is a constant which depends only on
the properties of the medium, and not on the velocity of propagation.

In the sequel we shall consider both the Yoffe fracture and the fracture

of constant shape.




2. THE HOMOGENEOUS CASE

For completeness we will briefly recount here the method of solu-
tion of YOFFE (1951) and BILBY AND BULLOUGH (1954). ULet a fracture of
length 2a move in the positive x direction with velocity ¢ in an iso-
tropic homogeneous elastic medium under the action of a stress Pyy =T
applied at = . Let Pij be the stresses in the vicinity of the
fracture and let u, v represent the displacement in the x and y
directions respectively. The boundary conditions in the half space

y>o are

and on y=o
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and ey and c_ are the longitudinal and transverse wave velocities

respectively.
The above expressions satisfy the third of boundary conditions

Substituting (2) and (3) into the other two boundary conditions

solution of these equations

(1).
one obtains a set of dual integral equations.

will give A(s). Substituting the expression for A(s) in expressions

(2) and (3) one obtains the solution for displacement and then the

stresses. The solution is considerably simplified by the use of com-

plex functions of the type £(x +i7T y) and g(x +d.§.y). An alternative

method is by the generalised solution of RADOK (1956).

For our purpose we need the stresses and the displacements on

y= 0. They are
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where
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and S is the shear modulus,




3. THE BIMATERIAL CASE

Let us assume that the boundary between the two media M' and M"
is plane and coincides with y = 0 (Fig. 1). In the sequel a single
prime will refer to the elastic constants, displacements and stresses
in the medium M', and the double prime will refer to like terms in
the lower medium M". Terms without prime(s) are general and refer to
both media. For a fracture to propagate along the plane y = 0 some
additional boundary conditions have to be satisfied. The conditions
are a) the displacements should be continuous across the interface and

b) the stresses acting across the interface should be continuwous. Or,

ony =20
ul = ull
vl - V“
(7)

pl - pu

YY YY

pl = Pu

Xy Xy

Since a free surface exists for x x 1.(9, the displacements need
not be continuous for this range of % X 1. The stresses pijalso need
not be continuous. From boundary conditions (1) it is seen that
v* = v" = 0 for 1. x })a. Further the stress p}'{; p;y = 0 for all

o}

u'* =u" for } x i)a

p;y= p;y for # l);a

(8)

t

} X *. Hence the additional boundary conditions to be satisfied reduce
t



From (4) one obtains

lGmap %) Foe

As the above expression is a function of the applied stress and the
geometry only, and is not dependent on elastic properties of the medium,

therefore the following expression always holds true
e 7] ! < \ - f I
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The last remaining displacement condition gives us
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Let
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Rewriting equation (9) we have
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when @ — 0 the limiting form of the above equation may be seen

to be

v 2
Loee K, - (1- K _ (11O
¢ —o (1-%.7)

This expression may be obtained by noting that as the velocity c

approaches zero we have
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4. FRACTURE OF CONSTANT SHAPE

The tip radius of the Yoffe fracture increases with increase of
velocity (see Fig. 1 of COTTERELL, 1964). This may not be true for
actual fractures. Therefore, it is possible that the tip radius of a
fracture in an isotropic homogeneous elastic medium is a constant
(MANSINHA, in press). The boundary conditions for such a fracture are

p.. =0 at oo

ij
and ony =0

v =20 for * x *
i

;>a
v = n(a2 - xz);5 for * X (fa (12)
P =0 for all * ;

v i

where n is a small arbitrary constant, with the ellipticity of the
fracture being given by (1-n).

Let us, as before, discuss the continuity of displacements and
stresses at the interface. For } x } <;a, a free surface exists
and the stresses and displacements need not be continuous over that
range of ‘ X }. We also note that v = pxy = 0 for * X }>>a. Thus,
boundary conditions (12) reduce to (8). However, the expressions
for u and pyy are different from those for the Yoffe fracture. From

MANSINHA (in _prcss) we obtain the expression for the displacement

u and stresses on = 0
Pyy Y
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and
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Neglecting the geometrical factors, the two conditions are given by
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If (15) is substituted in (17) it is immediately seen that the conditions
for the propagation of a fracture of constant shape along a bimaterial
interface are the same as those for a Yoffe fracture (expression (9).)

Expression (16) makes it possible for us to determine the relative shapes

of the fracture on both sides of the interface.

As the velocity ¢ —) O the limiting form of expression (16) is

given by
; / -
L.m 0. ke
h’/ - # 2—-
Ke




12,
5. RESULTS
Equations (9) and (16) have been numerically solved for various
values of the elastic properties of media M' and M" with the Rice
Computer. It should be noted that the Poisson's ratio G completely
determines the ratio of dilatational and transverse wave velocities

in a medium. The expression is given by

cf/t; = 2(4-9)/({-20)

We assumed values of i::‘"vand o, K2 and cf and determined the ratio K ot
The ratio of the densities can be easily determined from K,uand Kz.

Figures 2 through 6 give the curves K o Versus c £ for various
combinations of ¢ ;md o": and for different values of K2. For every
combination of ,and 0“‘”, K2 and K/V_ there exists a cf. Thus the
velocity of a tensile fracture along a bimaterial interface is
determined by the elastic constants of the two media. It can be
seen that for low values of K,,,, cf is almost independent of KZ.

The expressions within the brackets in equation (8) in the
denpominators is nothing but the Rayleigh wave equations for both
media M' and M" (EWING, JARDETZKY AND PRESS, 1957). Hence the
condition for fracture along an interface is tied in with the Rayleigh
wave velocity cp in either media. For Kz Ql, K —>o as ¢c — c'.

™ £ R
For K2 > 1 the limiting velocity value of o is given by

C

-t
~~
N
~.
o
H
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Figure 8 shows the curves n'/n" versus c_ for various"K2 and

£
o' =0, o" = 0.45. The ratio n'/n" will give at any point % x * (;a,
y = 0, the ratio of the normal displacement v'/v". For e’ = it

and K2= 1, the media are essentially identical. Therefore, n'/n" =1
for all Cge For cf = 0, n'/n" is independent of K2 and depends only

on G and G‘”.
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6. DISCUSSION

A ‘'welded' interface merely implies that there is no slippage at
the interface. Nothing is said about the 'strength' of the bonding.
Therefore, one cannot definitely state whether or not a fracture will
propagate along an interface. The results so far only permit us to
state that if such a fracture exists it will move at a velocity deter-
mined by the combination of elastic constants of the two media. It
should be noted that the results do not allow for acceleration or
deceleration. Hence, the fracture must start and stop suddcnly.

In Fig. 6 it can be seen that for K2 = 0.8 and 1.0 two velocities
cf exist for same values of Kp. The question then arises as to
at which of these two velocities the fracture will propagate. Since
both these velocities are lower thah cR the choice will probably
depend on energy considerations.

A somewhat unexpected result is that the limiting velocity
of fractures at an interface is the lower of the two Rayleigh wave
velocities, and not the Stoneley wave velocity. It will be recalled
that Stoneley waves are a type of wave propagating along and near

a bimaterial interface.

The limiting value of K, at cf7>0 depends only on g—~' and o .

A
The KZ_- cf curves are almost horizontal near ¢ —» 0. Therefore when

C=o0
ka,differs slightly from K/V‘zﬁd creeping fractures can exist for all

Kz and o~ and 4*'. When two media are being joined, catastrophic
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failure along the interface may be prevented by choosing the
materials such that
‘¢ A 2 (a-d0)/-267)]

(o] - /k - ,
KL ) = o 1 1 — 2 (- (420
‘¢ =0

This would insure that only very very slow fractures may propagate
along the interface. Precise satisfaction of the abkove relation will

mean that no fracture can propagate along the interface.
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FIGURES

Figure 1. Coordinate system. Thc fracture of length 2a moves
in the positive X direction along the surface separating mediums

M' and M".

Figures 2, 3 and 4. Curves of Kﬁ versus c/c' for two media
2
having the same Poisson's ratio but different transverse

wave velocities.

Figures 5, 6 and 7. Curves of K“ versus C/cé for two media
having different Poisson's ratio and different transverse
wave velocities.

Figure 8. Curves of n'/n" versus o/c* for o' = 0 and o" =

2

0.45, for wvarious values of K .
2
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